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An approximate method of investigation of a flow past very blunt bodies,the
face of which little differs from their transverse cross-section, is given.
Assumptions of Newton's theory and solutions in which stream tubes of vary-
ing cross-section [1] appear, are not valid for the class of bodles under
consideration. Unlike the numerical methods of integration of differential
equations given in [2], our method is iterative, and we present approximate
formulas expressing the pressure and separation of the shock wave from the
body, as a function of degree of compression.

1, We shall consider a plane or axially symmetric problem of homogeneous
hypersonic flow of an ideal gas (see Fig.lx. Here ABRC 1s the contour of
the body, 1 1ig the inner reglon adjacent to
the surface of the body and 2 1is the outer
reglon adjacent to the shock wave DOX. Let
w, v°, p° and p° be the longitudinal and
transverse components of the velocity vector,
pressure and density, respectively, in the
region between the shock wave and the body.

Flow of gas is described by Euler equations,
by the continuity equations on the shock wave
and by the boundary condition of nonturbulency
of the flow, Parameters of the unperturbed
flow shall be denoted by » . Solution of our
problem can be obtained by integrating two
systems of differential equations separately.
A One of these systems is valid in the region 1,
4 the other in the region 2, 8ince mathematical
Fig. 1 relationship between these solutions exist,

¢ they can be combined to describe the complete
flow field.

Let us introduce the parameter
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where vy 1is the ratio of specific heats.

The condition that the equations of motion of the gas and relations on the
shock wave form a nontrivial system when ¢ = O , leads to the following
transformation of coordinates;

2° = 81/1 z, P =y (1.“

and of the velocity components, pressure and density according to respective
formulas
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T, =)+ 0, E,EM =e'w (z, 7) + 0 (e
P’ — Po Peo \ 1 (1.2
m=i+w(x, r) + O (%), (-—°3) =-::—+G(z, r)+ 0 () ‘

The 1limit ¢ - O 1s taken when y - 1 and N == ,

Substitution of (1.1) and (1.2) into Euler's equations results in the follow-
ing system of differential equations for the outer region:

Ju du ép ov v
U TV T T e T =0
du v Jo a 2
5 Tt =7 (uE+V$%p~ﬁ=0 4.3)

Here [/ = O for the planeé, and J = 1 for axlally symmetric flows.
Boundary conditions on the séxock wave (index 5) are written thus
kA
¢
V=g, We=ltoi=-—p (1.4)

It can be shown that (v, r) are characteristic coordinates. Then, equa-
tions of the system (1.4) can be reduced to canonical form

Iv
Ut (ut— vz ) 4 vr et = —p*, wr— v * =0, u—2%=— 57 %" (1.5)
which can easily be transformed into
a .
vz fu* =—p* gy (P + ) =0, u* = px* (1.6)
Second equation of (1.3) can be integrated
1 r
= 5[ () +eg(r) 1.7)
Consequently

u* =2 [g’ (r} — “;,I:;ri' (V)]

oy e &
=60 =57 o oy a LD Gy p (1.8)
Yh vp

where J(v) and ¢(r) are srbitrary functions of integration, and &(r) is
an arbitrary function, as willl be shown later, of pressure distribution on
the body. Lower 1imit in the integrals (1.8) iz the value of velocity v

on the body {index ») and will be equal to zero in case of & nonturbulent
flow. In this manner we have obtained s complete solution of the given prob-
lem, in terms of the functions S , ¢ and @ .

Equation of the shock wave in parametric form is

ro==r.(v), z ¥ =z* [v, r, (v)] (1.9)
Then, first relation of (1.4} can be rewritten thus
dr, dz >
Ll {1.10)
Substitution x*= x* into (1.7), glves
dg I\ dr 1 .
(r—a + ) a = e (1.11)

Combining (1.4) and {(1.8) we obtain an equation connecting unknown func-
tions ¢{r) and J(v) on the surface of the shock wave

1
g (r) — Tfﬁf‘ f (o) =v +~ (1.12)

This enables us to write (1.11) as
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dr
red = =—vf" () (1-13)
which is integrable, and gives
’ d (f r ci+l
f @) —of (v) =— ot dv( ) T (1.14)
2. Using the relations (1.8) to (1 13) we first obtain s particular solu-
tion. The equation connecting J(v) ¢g(r) on the shock wave, is very

complex. Near the stagnation point however, the values of » and v are
small. Conseguently, uninown functions can be represented by serles, used
below to connect the inner and outer solution. Let the plane case be char-
acterired by the x and y variables, while the axisymmetric case — by x
and » . In this section we shall only consider the first case. By aym-

metry, the equation of the shock wave y,{(v) can be represented by a series

in odd powers of - v y, (o) = Ao -+ Bod + 0 () @.1)
Let us substitute this equation into the rigm:-hlnd side of (1.14).
Resulting differential equation can, for J = O, be easily integrated with
respect to J(v)
f)y=hky —Avinp —1Y, B34+ 0 (v —0) (2.2
Apart from this, from (1.12) we obtain
+ B
s)=Aly,+a+ el L L own -0 (23)
and analogously
z*=k—~A+a+A4n4 + 17,498 + 0 (%) (2.4)
Suitable choice of the origin of coordinates, gives
hh—A+a+Alnd=0 {2.5)
Cansequently, the parametric representation of the shock wave will be
y,(v) = Av + Bv® + 0 (%), 2.* (9) =Yg 402 + 0 (vY) (2.6)
Finally, the solution is given in terms of asymptotic series
A+ B 3
o (v, y) = Ao =+ 0= + —yi— S BR+ 0 (5,90
A4+ B
u*(a,y>=v( +25 240w w0 @7
A A + B\ (Av? 3
P =60 — (55— ) (5T Br )+
Pressure on the shuck wave has a relatively simple form
3 B
P ) =G ) — [~ (1+5 ) 7 .8
Prom the second relation of (1.4) we see, that when v - O ,
G(0) = —1, 2.9

It can easily be checked that the solutions (2.7) and (2.8) differ from
the corresponding results of [2].

3. Let us now extend the results obtained in [2] to the axially symmetric
case (f = 1). Approximations and few other details will, in this case, dif-
fer somewhat from those in the two-dimensional case. Imtead of the first
equation of (2.6), we shall have

r, = Av + Bv® 4 O (vP) (3.1)
and correspondingly
F (o) = — 1, 4%% — Y ABvt 4 O (28), f (v) = — 4% — Y3 AB»# 4+ O (%) (3.2)
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Prom (1.12) we obtain

1 2 B
g =4+ g7 (145 Z)ra+00. (©5)
and analogously
z* =Yy Adv® + ¥, Bo* + O (v°) (3.4)

Arbltrary constant is chosen here in such a manner, that when r = 0,
X, *= 0 . Equation of the shock wave in parametric form will be

re (v) = Av + BoS + 0 (o), 22 (v) = Yy Ao? + O (o4 (3.5)

The solution can be expressed in terms of the following expansions, valid
in the vicinity of stagnation point:

(3.6)
v 1 2 B 4 3
z* (v, ")—-_-A—AZ‘r—+‘27<1+—3—7>r2——3—AB—r—+...
v 4 B 1 2 B B /B
u* (v, ’)zv[AzT<1+”3‘7vz)'F7(1+T7)r+Zd—(7——1) r3]+.<-
A4 2 By v 16 vt Atpt
P*(v:")=G(")+?<1+§—7>T—TA3BF———Z;;—+...
The last of these expansions gives on the shock wave
1 4 B\ »? .
Pc*=G(’c)“_2-+(1+"§' T)T-J‘-O(v“) (G (0)=—"1/3) (3.7)

In conclusion we shall comment on the arbitrariness in obtaining the func-
tions J’'(v) from (1.11). It can easily be shown that an arbitrary constant
k, can be added to J'(v) and x,7’ substituted from g(r) without any loss
of generality, In fact, this method was used in the derivation of asymptotic
relationships for /7 and ¢ 1in (3.2) and (3.3).

4, We shall now proceed to construct a solution for the inner region,
which will be valid near the surface of the body. Let the contour of the
body (J = 0) be described by the functlon x,(y) . In the plane case, the
system of differential equations coincides with that [2] obtained for the
flow past a flat plate at right angles to the direction of the flow. In our
case however, the solution of differentiel equations will be different, due
to different boundary conditions, and will be of the form

V= Vb (y) cosh A (X — Xb) (4.1)
1 ’
U=V, ly) &, (Y)cosh A (X — X)) — TVb (y) sinh A (X — Xb) (4.2)
It will satisfy a simple boundary condition on the body when X = 1, (y)
dXy U
&y =V (4.3)
Pressure can be found from Bernoulll's integral
Py(y)y = —1, — 1, V% (y) (4.4)
As in previous formulas, subscript 2 denotes the values of the body,
and o
= 2D
-k (E)

where D(ec) 18 the distance of separation of the shock wave from the body,
pu(e) 18 a quantity of the same order as the width of the inner region:
Transverse velocity found from the inner solution of (4.1) when ¥ ~ — =
will now agree with the value obtained from the outer solution (2.7) and
(2.4) when x*- = , Utilizing the basic condition for combining the solu-
tions (A = 1/4), we obtaln

o Vo ) -
gW)=41In g b2 + X, (y) -+ const (4.5)
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This equatlon plays the part of the inner bdoundary condition for the outer
solution, since the velocity distribution V,(y) is related to the outer
solution by the condition of pressure compatidility, i.e. 1t requires that
(1.8) should coincide with (4.%) for the values f = O and r =y In this
case we can easily conf'irm that

Voy) = V3 + BR24A) V (4.6)
Putting (4.6) into (4.5) and taking (2.%) into account, we obtain

i 1']’ 4 -

D (e) = 5 e In 55— prgy , 6D

The condition of equallty of pressure which was obtalned above for a lim-
ited region, should be extended to the body in order to obtain a complete
solution for the plane case. This can be done by equating V,(y) which
defines the pressure on the body,to the transverse veloclty v on the shock
wave using the same values of p , and (4.5). Let us consider a function
v(y.} , being the inverse of y,{?) . In what follows we shall use the sym-
bog v without the subsecript o , to denote veloclty on the shock wave for
some definite values of y . Differentiating (4.5) and putting this into
(1.12), yields

t vy
g =v+ = A4 X ) “8)
When J = 0, (1.12) gives
. {—2? do
W == 3 (4.9)

Next we shall compute the magnitude [Pc—G(@]/8&". 1o do this, we
shall utilize (1.4) together with (1.8),(4.%) and (%.8). Assuming &(y) to
be equal to P,(y) , we obtain

P, — Py Yo (1 4 20% — V2
ey = — Q41
ewW (=) vy Ve @) (4.10)
0
Replacing t¢7"(t) under the integral sign with dv/dy given by {1.13)
and differentiating (4.9) with respect to v , we finally obtain
“_,_L_”L{ ot (1 -+ 200 — Vi)
V=T dy T U= %) dojdy
which together with (4.7), forms a system of two equations for uv{y) and

vy {y) Determination of these functions solves the problem of obtaining
the shock wave equation and velocity distribution for the given body.

(h11)

5. We shall now investigate the inner solution for the axially symmetric
case. It can easily be shown that differential equations remain the same as
in the plane case, 1.e. [2), with the exception of continuity equation

U /X + oV /]dr+V/r=0 5.1)

Let x,(r) be the equation of the generator of the solid of revolution.
We shall assume the inner solution to remain valid only in the region, in
which X — g(r) or x(r)- x,{(r) are of the order of ¢z together with U—gV
or ¥ — XV . Besides 3V/or can also be of the 0 (s ¥3) If ¢ O . With
the above restrictions, we can use the coordinate system and transformed
variables of the case J = 0 . It is easy to see that the system of differ-
entlal equations for the inner region has a solution

V= Vy () — Aer (X — X7y
U=VyXy () — (X — X)) (V' +Vy/r+herXy) +he (X — X2 (5.2

satisfying the boundary condition U = X/{r)v on the surface of the body.
Pressure is given by
Pb (I‘) = _1/2.....1/sz2 (53)

Combining transverse velocitles in a suitadble manner leads to the requi-~
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rement, that £/V () from {5.2) should agree with ¢ » ~ rd~% (g — z*), obtained
from the second relation of (3.2) and (1.7). This mekes it possible to find
Ay » Which 1s 1 Y, (r)
-1 b \r
b= Zr et g (r) =X, (r) + elar 22— (5.4)
We shall now return to the particular solution, to obtain the expression
forthe separation of the shock wave from the body. (3.7),(3.5) and (1.4)

1eld .
. o =[5+ 5] rom 55)

Hence, from (5.4) and (3.3) we finally obtain
o= arry[5 4 2T

Complete solution of the problem can be obtained, similarly to the case
of J = 0, by sétting up a number of differential equations. In the axially
symmetric case two integrals in the expression (1.8) for the pressure are
removed by differentiating (1.8) twice. This leads to high order of the
resulting system and complexity, sufficient to require numerilcal methods of
integration. The fact that the inner layer and displacement thickness
o(r) — X (r) are both small, cannot be utilized. A better and simpler method
follows: outer solution 1s obtained dy integrating

1 dv 1 dzy (r,) dxzy, (r)
(1= ) re g 2o =25 S0 7
with boundary condition x,(r) = ¢g(r) which can be obtained using (1.12),
(1.11) and (1.7) to find x*, and condition on the shock wave for the trans-
verse velocity *
_ (dx >
Ve = dr Jc

Equation (5.7) was investigated in [1], therefore we can assume that the
first approximation is known. Pressure on the body can be expreassed by
Formula

L] .
X¢ ¢

zp* (r) 2 v
Pyt = Pt (1) — = S 8ot (8) + 55 ) Eloy’ () — 3" (5 O ds* B) (58)
0 0
z* (r, a:c*) = x* (r, V) for xc* = xc* (V)

First integral in the formula for pressure 1is proportional to the Newton-
ian impulse and gives a centrifugal term dependent on the curvature of the
body. Before integrating the following term, we must equate (x,*— x*)/rs
to the curvature of the stream line relative to the surface of the body.
Then, the second term can be considered as a centrifugal term resulting from
the above curvature. In other words, function @(r) is computed by extrac-
ting definite integrals in (1.13) and suitable adjustment of pressure along
the shock wave. The value of V,(r) is found next from (5.32, and the itera-
tive process continues with a new value of ¢(r) found from (5.%). This
leads to more accurate equation of the shock wave and better value of trans-

verse velocity V,(r) on the body.

6. As an exampie, we shall solve the problem of flow past a plane disk
with 1’(r) = 0 . We assume zerc approximation to be lmown from [1]. Then

gy =4 =73%"r, (6.1)
where the subscript asterisk , denotes the critlcal value of 7 .

Besides, Av

o= T e (6.2)

This is sufficlient to give, together with {(1.10)
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* __ _L’ﬂ_ .
T =4 ,-1 1 + 207 } (6.3)
Acoording to (1.11), we have
Cpy v (1 4 %)
f)=—42 _(—i T 209 (6.4)
The value of the integral in (1.13) is easily found
OS £ () £ (1) dt = 327%W [20% (1 + 90% 4 109%) — (1 + 20%)° In (1 + 20%)] (6.5)

Using (4.2) we can now f. 7;3, and obtain the negative value of the
thickness ¢(r) — x(r) from (5.4}, On the axis, 5/4 = — 3/, , hence, taking
(5.6) into account, we obtain

D (e) = Ae'* (1 — V ¥e) (6.6)
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