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An approximate method of investigation of a flow past very blunt bodles,the 
face of which little differ8 fro6 their tranaverai cross-section, la given. 
Assumptions of Newton's theory and solutions In which stream tubes of vary- 
ing cross-section [l] appear, are not valid for the class of bodies under 
consideration. Unlike the numerical metho& of Integration of differential 
equations given In 121, our method is Iterative, and we present approximate 
fOrniUla8 expressing the pressure and separation of the shock wave from the 
body, as a function of degree of compression. 

hyp&onlc flow of an ideal 
We shall consider a plane or axial1 

ga;h~s;~~.l T 
symmetric problem of homogeneous 

. Here ABC Is the Contour of 
1 Is the Inner region adjacent to 

the surf~oe of the body and 2 Is the outer 
t-b, 9 renion ad.laoent to the shook wave DOK. Let 

u”T v”, P6 and p" be the longitudinal and 
transveree components of the velocity vector, 
preeaure and denelty, respectively, ln the 
region between the chock wave and the body. 

Flow of gas ia described by Euler tquatlona, 
by the contlnulty equations on the shook wave 
and by the boundary condition of nonturbulency 
of the flow. Parameters of the unperturbed 
flow shall be denoted by m . Solution of our 
problem can be obtained by integrating two 
systems of differential equations separately. 
Oim of these eyeterns Is v&d ln the-reglonml, 
the other ln the region 2. Since *mathematical 
relationship between these eolutlons exist, 
they can be comb'lned to describe the COmplete 
flow field. 

Iat u8 introduce the parameter 

where y Is the ratio of epealflc heats. 

The condition that the 5quatlone of mot= gf the gas and relations on the 
shock wave form a nontrivial system when , leads to the following 
transformation of ooordlnates; 

.p = ,'/t XV P = ? (1.1) 

and of the velocity components, preesure and density according to reepectlve 
formulas 
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P”-P, 
- = 1 -f- 8P @Y r) -i 0 w, ($q - + + t$ (2, r) + 0 (8) 

(f-2) 
PO0 *COa 

TheliDllt c+O latakenwhen y-+1 and M_+-. 

Substltutlon of (1.1) and (1.2) into Euler’s equations results In the follow- 
ing system of differential equations far the outer region: 

4s au & 
uX+v3i" ax? 

ao a0 -- 
~3dv ar -co 

-g-t+=-$7, (Ib~+D+-+=4 (1.3) 

Here j I 0 for the plane, and j I 1 for axially eymmetrlc flows. 
Boundary conditions on the 6;pk wave (index o} are written thus 

C 

‘C 
=- 

dr ’ fee =~+l?p=--& 04 
It can be shown that v, rf are oharacterietlc coordinates, 

tions of the system (1.4 ean be reduced to canonical form f 
Then, equa- 

u# * (a*- vz,*) + vx,*u,* = - J$+, a* - vL$’ = 0, u,* - 9* = - 5 go* 0.5) 
which oan easily be traneformsd into 

Second equatlon 06 (1.3) can be integrated 

2* = +f’ (v) + g (9 (1.7) 
Consequently 

u* = 2t 
f 
g’ (r) - STY (Eli 

g” (r) ’ 
p* = G (r) - 7 

s 
Pj” (t) d2 - ’ ci&l’ 5 i?f” (t) f’ (t) dt (W 

Vb VI 
where f(v) and g(r) are arbitrary functions of integration, and a(r) ie 
an arbitrary function, as will be shown later, of pressure distrfbutlon on 
the body. Lower limit in the integrals (1.8) is the value of velocity V 
on the body (Index b) and wlll be equal to zero in case of a nonturbulent 
flow. In this manner we have obtafned a complete aolutlon of the given prob- 
lem, in terms of the functions J’ , g and a . 

Equation of the shock wave In parametric form Is 

p C = rc (v), iIT * = x* [u, r, (v)l 
C U-9) 

Then, first relation of (1.4) can be rewritten thus 

dr, dz,’ 

“dv -dO (l.fO) 

Substitution x*- rf into (1.71, gives 

( V-- dg + 7%) $$- = -+ (u) (1.11) 

CombMng (1.4) and (1.8) we obtain 8n equation connectiM unknown i%nO- 
tions g(r) and f(v) on the surface of the shock wave 

f'(v)= v +"+ (1.12) 

This enables us to write (1.11) as 
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*dr,_ *Cl do - - of” (II) 

which is integrable, and gives 

(1.13) 

f (u) - uy (u) = - us -g f ( 1 
.J+l 

-i;+i 
(1.14) 

9, Using the relrtiono (1.8) to (1.14) we first obtain a partlmlar solu- 
tion. The equation OonBmoting f(o) and Q(F) on the shook waves is very 
oomplex. Maax the 8t8gnatlon point however, the v8fuee of + and v are 
Otill. Comeqwntly, utUamwn funotlonn aan be represented by aerie@, used 
below to owot the lx&nor and outer solution. bt the plane oart be char- 
aoterlsed by the 1 and y vsriablsr, while the aabymetrio aase - by x 
and r* In thir neation we shall only ooxksider the fir&i eassa _ Ey spm- 
metry, the equation of the rhook wave &(D) oan be represented by a series 
in odd pou8rs of v 

Ye (4 =Av+Bb+O(vb) (2.1) 

I&t w substitute this equation into the right+and ride of (1.14). 
Resulting differential equation oanI for j - 0 , bs easily integrated with 
respect to I(D) 

f(v)=k~v -AAlnv--/~BV~+O(zP) (v - 0) (2.2) 
Apart from this, from (1.12) we obtain 

(2.3) 

and analogouslp 
zc* = kl -A+a,t_AhA~1/~v4it.0(~4) (2.4) 

Suiteble choice of the origin of coordinrtes, give8 

itI--A+aI+AlnA=Q (2.51 
Cqnsequently, the parametric reprtaentatlon of the rhook wave will b8 

yG (Y) = Av f Bva + 0 (~9, IC* (v) = Ifs A@ + 0 (up) (2.6) 

Finally, the solution is given in term OF arymptotio series 

x* (v, y) = A 1x1 (UP Y -, 0) 

u* (v, y) = u bd -+ 0) (2.7) 

P” (v, Y) = G(Y) - i 
A A+B Au2 
F - y@--- )( -2- I- 4 3Bv’)$... 

Pressure on the shock wave has a relatively simple form 

P;(% Y,) = G (Y,) - p/a - (1 + ; $) g] (23) 

Prom the eecond relation of (5.4) we Bee, that when v - 0 , 
c (0) = - ‘ia (2.9) 

It can easily be checked that the solutions (2.7) and (2.8) differ from 
the corresponding results of f2J. 

3. Let uu mu extend the results obtained in (23 to the axially evtric 
case (3 = 1). Approximation6 and few other details will, in this uase, dir- 
SeF sonienhat from those In the two-dlaten6lon8l cam. Snutead of the first 
equation of (2,6), we shall have 

Tc = Av + Bus -t_ 0 (us) (3.1) 
and correspondingly 

I(v) = - V*A%* - tl&M + 0 (fl), f’ (vf = - A% - ‘.I$ ABlrS -f- 0 (vb) (3.2) 
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From (1.12) we obtain 

E?(rci=A +&-(l+++)r:+CI(r;) (3.3) 

and analogously 

% * = Ii2 Av2 + Vr Bv4 + 0 (v”) (3.4) 
ArUltrary con&ant is chosen here in such a manner, that when f I 0 , 

x, +- 0 . Equation of the shock wave In parametric form will be 

r,(v)=AvfBvSfO(v6), zC* (v) = V*Av2 + 0 (79) (3.5) 
The solution can be expressed In terms of the following expansions, valid 

In the vicinity of stagnation point: 

z+(v, r)=A-_4AIf+& 
( 

I++$ 

(3.6) 

) 
r2 +mq+. . . 

u*(v, r)=v As+ l+-$-~v2)-~-$(l++~)r+$-(~--i) 9-J+... 
[ ( 

P* (v, r) = G (7) + 
A’v4 $(I+$~);_~A8B;__ zr4 +*a* 

The last of these expansions gives on the shock wave 

pc* = c (rc) - s_ _t 1 +.3 J- 
( 

4 B 
(G (0) = - ‘/a> (3.7) 

In conclusion we shall comment on the arbitrariness in obtaining the func- 
tions Y’(u) from (1.11). It can easily be shown that an arbitrary constant 
kl can be added to I’(u) and k,rj substituted from g(r) wlthout any loss 
of generality. In fact, this method was used in the derivation of asymptotic 
relationships for / and 0 in (3.2) and (3.3). 

4. We shall now proceed to construct a solution for the Inner region, 
which will be valid near the surface of the bod 
body (3 = 0) be described by the fun&Ton r,(y 3 

. &t the contour of the 
. In the plane case, the 

system of differential equations coincides with that 123 obtained for the 
flow past a flat plate at right angles to the direction of the flow. In our 
case however, the solution of dlfferentlal equations will be different, due 
to different boundary conditions, and will be of the form 

v = v, (y) cod (x - x,) 

u = v, (y) xi (y) coshh (x - x,) - +Yd (y)sinhh (X - XJ 

(4.1) 

(4.2) 

It will satisfy a simple boundary condition on the body when x - x,(v) 
dXb U 
dy=V (4.3) 

Pressure can be found from Bernoulli’s Integral 

p, (Y) = - l/z - ‘/z v2, (Y) (4.4) 

As in previous formulas, subscript b denotes the values of the body, 
and 

X0 - D (8) 
x = ~~-- ~- 

P.(E) 

where D(c) lb the distance of separation of the shock wave from the body, 
v(c) is a quantity of the same order as the width of the Inner region-. 
Transverse velocity found from the inner solution of (4.1) when X 4 - = 
will now agree with the value obtained from the outer solution (2.7) and 

Utilizing the basic condition for combining the solu- 
!:A:! 7:": l$i,mw; obtain 

Ii’, (Y) 
g (y) = A In ~“~7 + X, (~1 -F const (4.5) 
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This equation plays the part of the inner boundary condition for the outer 
%olution, alnce the velocity distribution V,(g) is related to the outer 
solution by the condition of pressure compatibility, i.e. it requires that 
(1.8) should coincide with (4.4) for the values 1 I 0 and r = y In thla 
case we can easily confirm that 

vb h/j = v3 (1 -i- B&4) v (4.6) 

Putting (4.6) Into (4.5) and taking (2.4) Into account, we obtain 

The condition of equality of pressure which was obtafned above for a llm- 
lted region, should be extended to tha body In order to obtain a complete 
solution for the plane case. Thle can be done by equatlng V,(v) which 
define% the prea%ure on the body,to the transverse velocity v on the shock 
wave uelng the same values of y ) and (4.5). Let u% consider a function 
$’ l 

! 
being the inverse of ye (u) . In what follows we shall use the sym- 

u without the subscript 5 , to denote velocity on the shock w&Ye for 
some definite values of @ . 
(1.12), yields 

Mfferentiating (4.‘5) and putting this Into 

1 vb’ (?/) 
g’(Y)=v+ ,=A~b(~)+&‘(to (4.8) 

When j I 0 , (1.12) gives 

-z+ dv 
g" Iv) =- &z- dy (3.9) 

Next we shall compute the magnitude [PC - ~3 @)I f iI*, To do this, we 
shall utlllze (1.4) together with (1.8),(4.4) and (4.8). Assuming G(y) to 
be equal to P, (v) , we obtain 

v 
pi - Pb 

g” (Yf 

= ‘is (i + 39 - w _ _ 

(1 - ve) v-zdv/dy s 
tty p) & 

n 
(4.10) 

Replaclng W(t) under the integral sign with -du/by given by (1.13) 
and dlffe~entlating (4.9) with respect to v , we finally obtain 

1 d 
’ = T dy 

v2 (1 + 2va - vb2) -_ 
(1 - 9) dv/dy (Lll) 

which together with (4.7), forma a system of two equations for 
v,(v) 

U(Y) and 
Determination of these function% aolvea the problem of obtaining 

the shock wave equation and velocity dietributlon for the given body. 

5. We shall now lnveatlgate the inner solution for the axfally symmetric 
case. It can easily be shown that differential equations remain the same a% 
In the plane case,, *I.e. 123, with the exception of uontinuity equation 

H.Y/~X+Wlib+V/r=O (S.1) 

Let x%(r) be the equation of the generator of the solid of revolution. 
We shall asma% the Inner solution to remain valid 5nly in the region, in 
which X- 
or U 

p(r) or X(r)- X (r) are of the order of $12 together with &[Y 
-X,V . Besfdee W/'aar can also be of the O(e ‘fs) if X,if 0 

the above rest~lctlons, we can use the coordinate ayateni and tran%f&ned 
variables of the case J = 0 . It is easy to see that the aystem of dlffer- 
ential equation% for the Inner region has a solutlon 

v = V,(r) - h*r (X - A’,) 

u = v,x, (p) - (x - xbt @{ + vb / r + h*rx,‘) + A* Ix - xbj2 (5.2) 

8atiseing the boundarg condition U - A’:(f)V on the surface of the body. 
Pressure is given by 

P, (r) = - '/a - l/z vb2 (5.3) 

Combining traneverae velocltie8 In a suitable manner leads to the requi- 
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rement, that E”’ V (I.) from (5.2) should agree with c u - rAs2 (g - (t:‘), obtained 
from the second relation of (3.2) and (1.7). This makes It pdaalble to find 
A l , which 1s 

g (r) = X, (r) $ e’/*Aa ‘!. r (5.4) 

We shall now return to the particular solution, to obtain the eXPreSSiOn 
forthe aeparatlon of the shock wave from the body. 
yield 

(3.7),(3.5) and (1.4) 

TIb (r) = [-+ (1 + -+ $)]“s$ + 0 (r3) (5.5) 

Hence, from (5.4) and (3.3) we finally obtain 

.D (e) = AexIt {l-[$++$Jl’i.} (5.6) 

Complete solution of the problem can be obtrlned, similarly to the case 
of j - 0 , by ahtting up a number of differential equations. In the axially 
symmetric case two Integrals in the expression (1.8) for the pressure are 
removed by differentiating (1.8) twice. This leads to high order of the 
reaultlng system and complexity, sufficient to‘requlre numerical methods of 
integration. The fact that the Inner layer and displacement thlckneea 
g(r) -1,,(r) are both amall, cannot be utllleed. A better and simpler method 
followe: outer Bolution is obtained by Integrating 

(l__$)r,~.+t+,,,,~+~~~~ (5.7) 

with boundary condition x,(F) - q(r) which can be obtained using (1.12), 
(1.11) and (1.7) to find x*, and condition on the ahoak wave for the trans- 
verse velocity 

Liz* 

vc= -&- i ) C 
Equation (5.7) was lnveetlgated ln 111, therefore we can aB8ume that the 

first approximation 1s known. Pressure on the body can be expressed by 
Formula 

Zb*s’) 
*c . . 

Pb * = PC* (rj - -y- 1 fdXC* (8 +$I 5 [Xb* (r) - X* (?t XC* (t))l +* (E) (5*8) 

0 0 

x* (r, xc*) = x* (r, V) for x*= 
c xc* V) 

First integral In the Pormula for preeaure le proportional to the Newton- 
ian Impulse and gives a centrifugal term dependent on the aurvature of the 
body. Before integrating the following term, we muet equate (x,*- x*)/9 
to the curvature of the stream line relative to the surfaae of the body. 
Then, the second term can be aonaldered a8 a centrifugal term resulting from 
the above curvature. In other words, function 0(r) la computed by extrac- 
tlng definite integrals ln (1.13 
the shock wave. The value of Y, t 

and suitable adjustment of preeeure along 
r) la found next from (5.3 , and the ltera- 

tive process continues with a new value of o(P) found from _5.41. Thl,S t 
leads to more accurate equation of the shock wave and better value of trans- 
verse velocity V,(r) on the body. 

6. As an example, 
with X;(r) - 0 . 

we shall eol’ve the problem of flow past a plane disk 
We a6awne zero approximation to be mown from Cl]. Then 

g(r) = A =5: 3”’ r* (6.4) 

where the subscript asterisk l denotes the critical value of P . 

Besides, 
Av 

r =--- 
c (1 + zz+ 

62) 

This 18 sufficient to give, together with (1.10) 
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i + v* 

% (1 + 2vz)% 1 
Aaaording to (l.ll), we have 

(6.3) 

(6.4) 

The value of the integral 'in (1.13) is easily found 

32 (lA; 2vs)B[2Va (1 + 9Va + 1@") - (i + 2~~)~ In (i + 2va)] (6.5) 
0 

Ueins (4.4) we aan now find vba, 
thickness g(r) 

and obtain the negative value of the 
-X(r) from (5.41. On the tie, B/A = -8/I , hence, taking 

(5.6) Into aaaount, we obtain 

D (e) = Ae% (1 - Jf4e) (6.6) 
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